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EFFECT OF COATING LAYER FOR SPHERES
UNDER HERTZIAN CONTACT

S.H. Kim*
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A model is constructed to analyze the effects of layer hardness and thickness upon contact stresses for the coated elastic sphere
under normal loading. It is assumed that the layer is perfectly bonded to the elastic substrate and the radius of contact is very small
compared to the radius of indenter. By following a linear theory of elasticity, Fredholm integral equation is developed and it is
solved numerically. The resulting contact stresses are calculated at the layer surface as well as the layer-substrate interface. Also,
the second invariant of the deviatoric stress tensor, /J; are calculated for various layer substrate combinations and for several

layer thickness.

Key Words: Layer, Substrate, Coating, Fourier Integral Transform, Fredholm Integral Equation, Interfacial Stress,

Deviatoric Stress

NOMENCLATURE

a : Radius of contact

R : Radius of sphere

H . Layer thickness

J2 . The second invariant of the deviatoric stress ten-
sor

bz : Normal force

Sap : Relative approach of two spheres

r . Ratio of the shear modulus(z/ 1o)

Ur Us; Uz . Displacement components
Trrs Toa; Tzzi Tess Tzej - OLress components

77 . Shear modulus
Vs . Poisson’s ratio
bi : Hydro-static pressure

(=0 : The substrate

7=1; The layer)
]o(é?’)
]—1/2(57’)
sh(&r) =Sinh(&r)
ch(&r) =Cosh(&r)

. Bessel function

1. INTRODUCTION

For many tribological applications the production of better
. wear resistant materials requires hardening of surfaces.
However, when a hardened surface do not have the desired
properties, coated materials may be preferable. Some rele-
vant examples of coated products are cemented carbide
cutting tips (TiN, TiC), ball bearings, gears, high speed
drills, milling cutters and many machine elements.

The state of stress that arises when two deformable bodies
are pressed together by forces normal to the common tangent
plane at the point of initial contact is of great technological
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interest and has a long history. In 1882, Hertz (Hertz, 1882)
analyzed the problem of normal frictionless contact for
isotropic, smooth homogeneous materials. Later, Mindlin
(Mindlin, 1949) treated same case for rough bodies undergo-
ing normal and tangential loading. Lysmer and Duncan
(Lysmer and Duncan, 1972) published an extensive survey of
the literature most of which deals with a uniform normal
traction distributed over a circular surface region. In 1975,
Goodman and Keer(Goodman and Keer, 1975) studied the
case in which the deformation takes place in identical elastic
surface layers of arbitary thickness bonded to a rigid sphere.

In this present analysis, their reasoning is extended to the
case of an elastic layer with perfect adhesion to an elastically
dissimilar substrate. By following a linear theory of elastic-
ity, Fredholm integral equation is developed and it is solved
numerically. Generally, material yielding is governed by the
Von Mises yield criterion. In this analysis, the second invar-
iant of the deviatoric stress tensor, /J;, are calculated for
various layer substrate combinations for the layer thickness
0.25< H/a<5.

2. BASIC EQUATIONS AND DERIVATIONS

Two elastic spheres with elastically dissimilar surface
layers are subjected to a normal force, p., and produces a
resultant contact radius, a. It is assumed that the layers are
perfectly bonded to the substrate. The geometry and the
coordinate system is shown in Fig. 1 where the subscripts 1
and 0 represent the layer and substrate, respectively. The
state of stresses and displacements in each of the layers and
the substrates due to the normal loading are governed by a
following linear theory of elasticity (Sneddon, 1951) as:
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Fig. 1 Geometry of the problem

2ttaa= 00 = (3~ 4va) Gat 2222 10
re=TEe (1, 9e TG ad
o=t The (1 -2,,) L ey 2 FC (1)
rmz:%-Z ag(%+ a;rc" (1f)
R 19
ee=Lhe 51—y e ;TG (1h)

(=0, 1)

The harmonic functions F,(r, §,2) and G.(r, 8, z) can be
taken as

Fi(r.2) =[[A(é>sh(gz> +B(&)ch(£2)] & o(&r) dE
(2a)

Gilra) = [TTC(&)ch(8) + D (&) sh(g2) 1 o(&r) dé
(2b)

Fo(r2)= [ U@ [sh(6) ~ch (&)1 ol a2 (20)

cu(r,z>=fv<s> [sh(&z) —ch(2) 1 Jo(&r)dE  (2d)

The boundary conditions for the problem are as follows:

Tzr1 =0 z=0 0<r<oo (3a)
Ua=w(r) z=0 0<r<a (3b)
o =0 z2=0 a<y<oo (3¢)
Urit™=Uro Un1— U220 z2=H 0< ¥ < oo (4ab)
Tel = Tzz0 Ter1=Tlare 2= H 0<7r<oo (4Cd)

Once an arbitary coefficient ¢(&) is introduced such that

tn(r0) = [ () Jo(er) di )

coefficients, A(£), B(£), C(&), D(&), U(&) and V(&) inEq.
(2) can be calculated in terms of ¢(&) as following:

[CDUV]T=¢(&){M)'[shp chg shg chg]T  (6abcd)

and
A=(1-2v)C, B=2(1—-v)D—¢c(8) (6ef)

where,

Bshf—2(1—w)chg Bchf—(1-2um)shg —Te™? —T{3+(3—4w)le™’?
M= Bshg—2(1—w)shg Bshg+2(1—w)chp —Te™? IBe™*
| 5shp Bchf—sha —e? —{B+(1-2w))e”*
Bshp~sha Bchp e {B+2(1—w)fe™*

Here, f=¢&H and I'= i/ .
In order to satisfy Eq. (3b) and Eq. (3c), the following dual
integral equations are developed ;

fe(é)fo@ﬂds—["e(5)L(5,u,,w>jo(5r)d5
M1

=T_—;Tw(r) 0<r<a (7a)

fdf)fo(sr)gds:o a<r<oo (7b)
with

LBonve) =1+ C(&) (7¢)

To solve Eq. (7a) and Eq. (7b), a technique due to Copson
(Copson, 1961) is followed. When &(£) is expressed as

@ =" [0 e dr ®)

then,

12
Tez1 (7, 0) = (i)l {(a—_Wtﬁo

+ [ )
=0,

0<r<a (9a)
a<r<oo  (9b)

Now, Eq. (3c) is satisfied automatically, and for the pressure
vanishing at the edge of the contact region r=a,

dola) =0 (10)

Following Goodman and Keer (Goodman and Keer, 1975), the
governing equation for ¢, can be derived from Eq. (7a) as

do(s) —s”%“z%o(t)df["uﬂ,m,uo)
EJ_12(&s) Jo12(EL) dE

(5 T e aw

The resultant normal force, P,, is
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Pzzf"f— fuxt (#,6,0) rdrd
=(Z)" [(puttrat a2

It is assumed that the contact radius, a, is small compared
with the radius of the spheres, R. According to Hertz theory,
when the bodies are compressed by normal forces, the normal
displacement at the boundary of the contact becomes

U (7,6,0) ::%[641{2“72/R1 0<r<a (13)

where, §,, is the relative approach of two spheres. Using the
following nondimensional definitions

2
s=oa, t=1 f=EH, 00=Cr'p

& m
do(s) = B =y Dy (o) (14)

Eq. (11) reduces to

0u0) —2{-&) [(ou(0rdr ["L(Bviw)

cos (ﬂa—%) cos (ﬂz%) dB

T

The stress function @, and the relative approach C; can be
determined simultaneously by means of solution of symmet-
ric Fredholm integral equation in Eq. (15) and an auxiliary
condition, Eq. (10). From Eq. (10) and Eq. (15), the contact
radius, a, is determined: a/R= Cz[—l—;ﬂl’z/ naz}. From Eq.
(9a), the maximum normal pressure in the contact region
can be calculated: r.imen=— Ci[P:/7a*]. For a limiting
case of an infinitely thick layer (H/a=0), the Hertz result is
obtained : C,=1.0, C,=3/8x, and C;=1.5. The numerical
values of C,, C; and (s are given in Fig 2, Fig. 3, and Fig 4 for
various layer substrate combinations for the layer thickness
ranging 0.2< H/a<5. The stress components in the layer and
the substrate are evaluated as follows:

trp.2/ ) =Po/na* [ (o.2/ DI §-50)dg  (162)
0.2/ H) = Pof xa? || Wio,2/ DT B40)d  (16b)
tocl o2/ H) = Pofma” [ | o/ D (2L,

(8-80)— 87 8-%0)+ rito.2/ H) 1 B-470) a8~ (160)

Z'zzi(,O,Z/H)=Pz/ﬂ02£w75(p»Z/H)fo< %p)a’,@" (16d)

{z’=l : for the layer(z/H <1)
;=0 : for the substrate(z/H >1)

Here, Q. ¥, and y, are defined in the Appendix. The
second invarient of the deviatoric stress tensor, J,, is defined
as

fzz%s,-,-su an

where,
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Fig. 2 Relative approach as functions of layer thickness fo
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Fig. 4 Peak Surface pressure as function of layer thickness for
various layer-substrate combinations

Sij=0:— Pody; (18)
POZ%‘(TW;’+ Tooi + Tezi) (19)

Here, S,; is the deviatoric stress and P, is the hydro-static
Pressure.

3. NUMERICAL RESULTS

Computations have been carried out for several layer sub-
strate combinations. The thinnest layer had a thickness of
one-fifth of the radius of the contact region. The material
properties (shear modulus, poisson’s ratio) considered in this
study are shown in Table 1. The case of tungsten coated to
the steel represents the hard coating while the case of the
aluminium coated to the steel represents the soft coating. The
peak surface stress distributions for various layer-substrate
combinations are shown in Fig. 5. The surface stress at the
center of the contact for the case of soft coating is more
concentrated than the case of hard coating when the layer is
thin (H/a=0.5). However, both cases produces almost iden-
tical surface stress concentrations when the layer gets rela-
tively thick (H/a=2.0). The contour for the second invar-
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iant of the deviatoric stress tensor normalized with respect to
the average contact pressure, /] ./ P,/ ra® are given in Fig. 6,
Fig. 7 and Fig. 8. For the case of homogeneous medium (fig. 6)
the maximum J,/P./xa® of 0.528 occurs at z/a=0.45,
Fig. 7 is for the case of tungsten coated to steel and Fig. 8 is
for the case of aluminum coated to steel. The layer thickness

Table 1 Material properties

Radius r/a
O.OO'O 0.5 1.0 1.5 2.0

Materials Shear Modulus Posson's Ratio
1(GPa) v

steel 80 0.28
aluminium 27 0.33
tungsten 160 0.30

T 2.0
B /ra ,(

ha

. — + tung B

P
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Radius (r/a)
(a) H/a=0.5 and
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Fig. 5 Surface pressure distributions for various layer-substrate
combinations
Radius r/a
TN 209902, 9
Max 0.52 S § RN ’

)\

. , .
1.5 —— s

2/a

2.0

Fig. 6 Contour plots for the second invariant of the deviatoric
stress tensor, JJ,/ P,/ na*(layer : steel ; substrate : steel)
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Fig. 7 Contour plots for the second invariant of the deviatoric
stress tensor, ],/ P,/ na*(layer : tungsten ; substrate :
steel)
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Fig. 8 Contour plots for the second invariant of the deviatoric
stress tensor, 7./ P./xa?(layer : amuminum ; substrate :
steel)

H/a is varied from (.25 to 1.0 for both cases. At the layer-
substrate interface, there are considerable jumps for the
values of /T ,/ P,/ na? because of material inhomogeneity. The
location where the maximum 7,/ P./zq* takes place moves
from the layer to the substrate as the layer thickness(H/a)
decreases.

4. CONCLUSION

A contact problem is formulated and solved numerically
when an elastic layer, which is bonded to a sphere, is subject-
ed to a normal loading. The contact stress at the layer
surface as well as the Mises stress in the layer and the sphere
are calculated for various layer-substrate combinations. The
Mises stresses evaluated will give the assessment to pinpoint
the most vulnerable area when a coated material is subjected
to a compressive loading.
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APPENDIX

Q. ¥,n: and y, in Eq. (16) are defined in the forms,

Q 1 (B,z/H) =

{Ao(B) + wDy(B)}sh(w) +{Bo(B) + wCo(B)}ch(w)
Qo(B,2/H) =

—{Mo(B) + wNo(B) }e ™™

U (B,z/H) =

—TwDo(B)ch(w) +{wCo(B) —eo(B) + Do(B) }sh(w)]B
Y(B.z/H) =

—[U(B+ (1 —210) Vo(B) +wVe(B)]Be™®

m(B.z/H) =

=2n[Co(B)sh(B) + Do (B)ch(B)] B

UU(B,Z/H) =

"'ZI/oNo(,B)ﬁe_w

n(B.z/H)=

~[wDs(B) sh(w) +{wCo(B) —&o(B) + Do(B) }ch(w) 14
ro(B,2/H) =

—[Ua(B) +2(1—w0) Vol B) +wVo(B)]Be™®

where, w=p8z/H.



